Difference between revisions of "Panzerkampfwaggen X Muwatallis"

From NSwiki, the NationStates encyclopedia.
Jump to: navigation, search
 
Line 13: Line 13:
 
B4C has a mass of 2.55g/cc and ME vs shaped charges of ~ 4.0...leading to a space effectiveness of ~ 1.3.
 
B4C has a mass of 2.55g/cc and ME vs shaped charges of ~ 4.0...leading to a space effectiveness of ~ 1.3.
  
Now a mixture of CaCO/GAP and B4C should have a density of 1.7-1.8 g/cc [2.55g/cc+1.0g/cc ÷2]. Some thing with the density of CaCO/Gap should have an effectiveness of ~ 0.7 [space effectiveness] so a average of B4C & CaCO/GAP should be ~ 1.0 spaced effectiveness...
+
Now a mixture of CaCO/GAP and B4C should have a density of 1.7-1.8 g/cc [2.55g/cc 1.0g/cc ÷2]. Some thing with the density of CaCO/Gap should have an effectiveness of ~ 0.7 [space effectiveness] so a average of B4C
 
+
The ME should be 7.83/1.7= 4.6.
+
 
+
But the CaCO/GAP is reactive and generates a considerable improvement in effectivenes because this reactive forces the steel plates apart...using the VM-11 paper as a guide the ME of steel foam is ~ 3.3 while the value for steel CaCO/GAP is ~ 10.0...meaning this reactivity tripled the effectiveness of the sandwich...
+
 
+
If this same reactivity is applied to the above B4C & CaCO/GAP sandwich we end up with ~ 14:1 Me.
+
 
+
Now in this paper there were reactive elements that were tested with thin explosive layers to enhance the bulging effect on the outer steel plates...these ranged from 4-6 times the base values and if these super reactive forces are applied to the MEXAS model thats 4.6 x 4-6 or ME of 18:1 -28:1.
+
 
+
The paper showed that MEXAS @ 15° offers as much protection as ERA @ 60-70°. If you take Blazer this is two 2-3mm steel plates and a couple of mm of explosives [density ~ 1.8g/cc?]...any way thats ~ 6mm steel mass @ 60-70° or 12-18mm steel...the ME of these ERAs are reported to be ~ 20:1 meaning this resistance is ~ 240-350mm. Thus MEXAS with a steel mass of ~ 7mm is as effective as >250mm RHAe or a ME of 36:1!!!!
+
 
+
Heres the crunch...studies of bulging plates show that plate speed is the key. Well if the above chemical reactive forces can 'bulge' a plate sufficently to tripple quadruple its effectiveness , image how effective they would be on a small ceramic [B4C ]nugget? Rosenberg and Dekel wrote several papers on the parameters of this bulging prossess...it was clear that if you increases the interlayer or reduced the thickness of the outer steel plate [mass], the plate bulging velocity shot up [going from 200-800m/s in some cases].
+
 
+
Could be that instead of tripple its 6-8 times the ME against shaped charges? That would be an ME of ~ 32-37 .
+
 
+
<b>Shortstop:</b>
+
The Shortstop Electronic Protection System (SEPS) is an RF Proximity Fuze counter measure. The Shortstop battlefield electronic countermeasures system is capable of prematurely detonating incoming artillery and mortar rounds. It counters the threat of RF Proximity Fuzed munitions by causing them to prefunction, to protect friendly ground troops, vehicles, structures, and other equipment under fire.
+
 
+
The SHORTSTOP system was originally produced as a Quick Reaction Capability (QRC) product in support of Desert Storm. A request for information (RFI) was received from ARCENT addressing available countermeasures for indirect fire munitions utilizing proximity fuzes; such as those found in artillery, mortar, and rocket munitions. Whittaker Corp. in Simi Valley, CA built the system for PEO-IEW during the Gulf War in response to the artillery threat posed by the Iraqis, but the war ended before Shortstop could be deployed. The system could reduce casualties to ground troops by as much as 50 percent during the initial stages of an enemy attack.
+
 
+
These prototype systems were subjected to a minimal amount of environmental testing in preparation for deployment. After Desert Storm, the system was subjected to extensive live fire testing in the desert at Yuma Proving Grounds and evaluated by the TRADOC Analysis Command (TRAC) and the Dismounted Battlespace Battle Lab. The SHORTSTOP, AN/VLQ -9 or -10, systems demonstrated, in testing, the ability to significantly enhance survivability of troops and high value assets from indirect fire, proximity fuzed munitions. Reports of more than 5,000 live artillery and mortar round firings against Shortstop in tests at Yuma Proving Ground, Ariz., indicate that the system is 100 percent effective against selected weapons. The test rounds were fired singly and in barrages, with none reaching their intended target, test officials reported.
+
 
+
The prototypes were deployed for a limited period of time in Bosnia and were returned to contingency stock in 1997. To meet urgent operational requirements for deployed forces, the 3rd Army Commander on 11 Feb 98 requested 12 Shortstop Electronic Countermeasure Systems. These systems were readily available as a near term loan that only required funding to train operators and purchase some fielding and maintenance related items. HQDA approved the release for immediate deployment, requesting AMC execute the action that was subsequently completed by CECOM's Project Manager for Firefinder. The QRO supported delivery and fielding of these systems by coordinating the necessary arrangements for deployment of a two-man New Equipment Training Team (NETT) from CECOM. The NETT departed on 25 Feb 1998 with the equipment (acting as couriers) on a C-5 Cargo flight out of Dover AFB. The SHORTSTOP system training, checkout and positioning was completed by the CECOM NETT 20 March 1998.
+
 
+
Packaged in a suitcase-size case and fitted with a small multi-directional antenna, the Shortstop system can be activated and operational within seconds. Shortstop's passive electronics and operational features make it impervious to detection by enemy signal-intelligence sensors. In the near future, Shortstop will shrink in size, down to 25 pounds. Whittaker is currently under contract to build three new, smaller versions: manpack and vehicle units, as well as a stand-alone unit.
+
 
+
<b>Full Spectrum Active Protection Close-In Shield</b>
+
FCLAS is comprised of a sensor and short range grenade launcher, loaded with special fragmentation grenades with delay fuses set to intercept the incoming threat at a range of approx. 5 meters from the protected vehicle. The actual initiation of the explosive charge is triggered by a side looking RF proximity fuse which senses the incoming projectile as it passes nearby. The explosion forms a vertical, doughnut shaped fragmentation effect that kills the passing threat but does not effect the protected vehicle. The system's target weight is 140 kg., to enable deployment on light vehicles. Each grenade is equipped with a forward looking radar mounted on the exposed tip of the grenade. Each of the FCLAS munitions has such an integrated radar, which forms a complete sensor, monitoring a protective hemisphere around and above the vehicle. The Army hopes to get a prototype system of FCLAS for testing in 2004 and an operational system, which could protect against RPG threats, deployed with Bradley, Stryker and Humvee
+
 
+
</b>Anti-Missile Defenses</b>
+
Other than the MEXAS addition the refit drops the MetalStorm gun and is instead using the DREAD gun:
+
 
+
// DREAD - ball firing gun -
+
 
+
What is the DREAD, really? How does it work? In a sentence, the DREAD is an electrically-powered centrifuge weapon, or centrifuge "gun". So, instead of using self-contained cartridges containing powdered propellant (gunpowder), the DREAD's ammunition will be .308 and .50 caliber round metal balls (steel, tungsten, tungsten carbide, ceramic-coated tungsten, etc...) that will be literally spun out of the weapon at speeds as high as 8000 fps (give or take a few hundred feet-per-second) at rather extreme rpm's, striking their targets with overwhelming and devastating firepower. We're talking about total target saturation, here, folks. All this, of course, makes the DREAD revolutionary in the literal sense, as well as the conceptual one.
+
 
+
According to the DREAD Advantages Sheet, "unlike conventional weapons that deliver a bullet to the target in intervals of about 180 feet, the DREAD's rounds will arrive only 30 thousandths of an inch apart (1/32nd of an inch apart), thereby presenting substantially more mass to the target in much less time than previously possible." This mass can be delivered to the target in 10-round bursts, or the DREAD can be programmed to deliver as many rounds as you want, per trigger-pull. Of course, the operator can just as easily set the DREAD to fire on full-auto, with no burst limiter. On that setting, the number of projectiles sent down range per trigger-pull will rely on the operator’s trigger control. Even then, every round is still going right into the target. You see, the DREAD's not just accurate, it's also recoilless. No recoil. None. So, every "fired" round is going right where you aim it.
+
 
+
user posted image
+
 
+
The only thing the DREAD's operator will really have to worry about is running out of ammo, which isn’t likely. Any reasonably skilled gunner (Humvee, APC, Apache attack helicopter, etc.--doesn't matter) should be able to avoid running through all 50,000 (or more) rounds of .308 Cal. or 10,000 (or more) rounds of .50 Cal. ammo prematurely, especially when he or she can dial down the DREAD's cyclic rate to 5,000 rpm or slower, if necesssary. Even if it becomes necessary to increase the DREAD's magazine capacity to upwards of 100,000 rounds (.308 Cal.) or 20,0000 rounds (.50 Cal.), and run the weapon all day and all night for weeks on end, this will have absolutely no effect whatsoever (positive or negative) on the reliability or durability of the weapon system. The DREAD is both heatless and frictionless, and doesn’t generate any high pressures. So, there’s virtually no wear and tear on the system, no matter how many rounds are fired through it back-to-back, even if it's run constantly on full-auto at 120,000 rpm, the whole time.
+
 
+
Here's the kicker: because it's electrically powered and doesn't use any powdered propellant for it's operation, the DREAD Centrifuge Weapon is virtually silent (no sound signature), except for the supersonic "crack" of the metal balls breaking the sound barrier when they're launched. This makes the direction that the rounds are coming from, and their point of origin (firing source), very difficult for enemy forces to identify. It also allows the operator to communicate easily with his team, or with his command structure, while he's still firing on the enemy (with the DREAD). With the DREAD, he won't have to fight to communicate over his own weapon's firing report. And, since the gun doesn't generate any muzzle flash or heat (it's heatless and frictionless, remember?), it doesn't produce any flash signature or heat signature. So, identifying the gun itself with IR (infrared) sensors will be impossible. The vehicle that the DREAD is mounted on is the only thing that will display a heat signature. That leaves you with a difficult-to-detect/locate weapon with a virtually endless suppy of ammo. Even if the DREAD-equipped vehicle does get identified and fired upon by the enemy, the risk of a catastrophic explosion from a bullet strike on the ammunition supply is zero, because the DREAD’s ammunition doesn’t contain any propellant. There’s no gunpowder onboard to blow up. That just leaves the gas tank (vehicle’s). Nothing’s foolproof.
+
 
+
More Info On DREAD
+
The Weapon
+
 
+
Imagine a gun with no recoil, no sound, no heat, no gunpowder, no visible firing signature (muzzle flash), and no stoppages or jams of any kind. Now imagine that this gun could fire .308 caliber and .50 caliber metal projectiles accurately at up to 8,000 fps (feet-per-second), featured an infinitely variable/programmable cyclic rate-of-fire (as high as 120,000 rounds-per-minute), and were capable of laying down a 360-degree field of fire. What if you could mount this weapon on any military Humvee (HMMWV), any helicopter/gunship, any armored personnel carrier (APC), and any other vehicle for which the technology were applicable?
+
 
+
That would really be something, wouldn't it? Some of you might be wondering, "how big would it be", or "how much would it weigh"? Others might want to know what it's ammunition capacity would be. These are all good questions, assuming of course that a weapon like this were actually possible.
+
 
+
According to its inventor, not only is it possible, it’s already happened. An updated version of the weapon will be available soon. It will arrive in the form of a...
+
 
+
tactically-configured pre-production anti-personnel weapon firing .308 caliber projectiles (accurately) at 2,500-3000 fps, at a variable/programmable cyclic rate of 5,000-120,000 rpm (rounds-per-minute). The weapon's designer/inventor has informed DefRev that future versions of the weapon will be capable of achieving projectile velocities in the 5,000-8,000 fps range with no difficulty. The technology already exists.
+
 
+
The weapon itself is called the DREAD, or Multiple Projectile Delivery System (MPDS), and it may just be the most revolutionary infantry weapon system concept that DefenseReview has EVER come across.
+
 
+
The DREAD Weapon System is the brainchild of weapons designer/inventor Charles St. George. It will be 40 inches long, 32 inches wide, and 3 inches high (20 inches high with the pintel swivel mount). It will be comprised of only 30 component parts, and will have an empty weight of only 28 pounds. That's right, 28 pounds. The weapon will be capable of rotating 360 degrees and enjoy the same elevation and declination capabilities of any conventional vehicle-mounted gun/weapon.
+
 
+
The first generation DREAD (production version), derived from the tactically-configured pre-production weapon, will most likely be a ground vehicle-mounted anti-personnel weapon. Military Humvees (HMMV's) and other ground vehicles (including Chevy Suburbans) equipped with the DREAD will enjoy magazine capacities of at least 50,000 rounds of .308 Cal., or 10,000 rounds of .50 Cal. ammo.
+
 
+
But, what is the DREAD, really? How does it work? In a sentence, the DREAD is an electrically-powered centrifuge weapon, or centrifuge "gun". So, instead of using self-contained cartridges containing powdered propellant (gunpowder), the DREAD's ammunition will be .308 and .50 caliber round metal balls (steel, tungsten, tungsten carbide, ceramic-coated tungsten, etc...) that will be literally spun out of the weapon at speeds as high as 8000 fps (give or take a few hundred feet-per-second) at rather extreme rpm's, striking their targets with overwhelming and devastating firepower. We're talking about total target saturation, here. All this, of course, makes the DREAD revolutionary in the literal sense, as well as the conceptual one.
+
 
+
According to the DREAD Advantages Sheet, "unlike conventional weapons that deliver a bullet to the target in intervals of about 180 feet, the DREAD's rounds will arrive only 30 thousandths of an inch apart (1/32nd of an inch apart), thereby presenting substantially more mass to the target in much less time than previously possible." This mass can be delivered to the target in 10-round bursts, or the DREAD can be programmed to deliver as many rounds as you want, per trigger-pull. Of course, the operator can just as easily set the DREAD to fire on full-auto, with no burst limiter. On that setting, the number of projectiles sent down range per trigger-pull will rely on the operator’s trigger control. Even then, every round is still going right into the target. You see, the DREAD's not just accurate, it's also recoilless. No recoil. None. So, every "fired" round is going right where you aim it.
+
 
+
One of the ammunition types the DREAD will be delivering downrange is the "Collision Cluster Round", or "CCR", that will be used to penetrate hard targets. The Collision Cluster Round (CCR) is explained in more detail on the munitions page of the DREAD Technology White Paper (links below). The DREAD Advantages Sheet also lists all the other advantages that the DREAD Weapon System enjoys over conventional firearms.
+
 
+
And, all this from a weapon that doesn't jam. Remember how at the beginning of the article I wrote “no stoppages or jams”? The DREAD won't jam because, according to its inventor, it can’t jam. The DREAD's operating and feeding mechanisms simply don’t allow for stoppages or jams to occur. It thus follows that the DREAD Centrifuge Weapon will be the most reliable metallic projectile launcher/ballistic device on the planet. DefRev is not at liberty to publish exactly why the DREAD can’t jam, since Mr. St. George hasn’t given us permission to describe the gun’s operating and feeding mechanisms in any detail.
+
 
+
The only thing the DREAD's operator will really have to worry about is running out of ammo, which isn’t likely. Any reasonably skilled gunner (Humvee, APC, Apache attack helicopter, etc.--doesn't matter) should be able to avoid running through all 50,000 (or more) rounds of .308 Cal. or 10,000 (or more) rounds of .50 Cal. ammo prematurely, especially when he or she can dial down the DREAD's cyclic rate to 5,000 rpm or slower, if necesssary. Even if it becomes necessary to increase the DREAD's magazine capacity to upwards of 100,000 rounds (.308 Cal.) or 20,0000 rounds (.50 Cal.), and run the weapon all day and all night for weeks on end, this will have absolutely no effect whatsoever (positive or negative) on the reliability or durability of the weapon system. The DREAD is both heatless and frictionless, and doesn’t generate any high pressures. So, there’s virtually no wear and tear on the system, no matter how many rounds are fired through it back-to-back, even if it's run constantly on full-auto at 120,000 rpm, the whole time.
+
 
+
Here's the kicker: because it's electrically powered and doesn't use any powdered propellant for it's operation, the DREAD Centrifuge Weapon is virtually silent (no sound signature), except for the supersonic "crack" of the metal balls breaking the sound barrier when they're launched. This makes the direction that the rounds are coming from, and their point of origin (firing source), very difficult for enemy forces to identify. It also allows the operator to communicate easily with his team, or with his command structure, while he's still firing on the enemy (with the DREAD). With the DREAD, he won't have to fight to communicate over his own weapon's firing report. And, since the gun doesn't generate any muzzle flash or heat (it's heatless and frictionless, remember?), it doesn't produce any flash signature or heat signature. So, identifying the gun itself with IR (infrared) sensors will be impossible. The vehicle that the DREAD is mounted on is the only thing that will display a heat signature. That leaves you with a difficult-to-detect/locate weapon with a virtually endless suppy of ammo. Even if the DREAD-equipped vehicle does get identified and fired upon by the enemy, the risk of a catastrophic explosion from a bullet strike on the ammunition supply is zero, because the DREAD’s ammunition doesn’t contain any propellant. There’s no gunpowder onboard to blow up. That just leaves the gas tank (vehicle’s). Nothing’s foolproof.
+
 
+
There's more. Since the DREAD/MPDS (Multiple Projectile Delivery System) is a centrifuge weapon, projectile velocity can be adjusted instantly back and forth between lethal and less-lethal/non-lethal modes. This means it can be utilized just as effectively for embassy security and peacekeeping roles. As an embassy security weapon, the less-lethal/non lethal mode would most likely be the way to go, in most cases. Less-lethal is usually adequate for any crowd control or riot control situations. However, let’s say the crowd starts storming the gates, and now presents a lethal threat to the occupants inside. Well, just pull your Marines inside, switch your remotely-operated battery of DREAD's on over to lethal mode, and make survival above ground impossible for anyone outside the embassy. No one gets in. Same thing goes for military base security. Remote DREAD Centrifuge Gun Pods can be outfitted with heat and motion sensors, and left in unmanned areas. These remote pods can be either human-operated, or pre-programmed with both less-lethal/non-lethal and lethal protocols that will function automatically and not even require human operation. Mobile robotic platforms, including remote-controlled Unmanned Ground Combat Vehicles (UGCV's), could also be outfitted with DREAD systems. And, the list goes on. The technology application possibilities/potential uses are virtually endless.
+
 
+
Look out, DREAD's comin'.//
+
 
+
<b>Anti-Mine Warfare</b>
+
As for anti-mine warfare:
+
 
+
The system, called Zeus-HLONS (Laser Ordnance Neutralization System), uses an industrial solid state laser, normally used to cut metal, but can also ignite explosives up to 300 meters away. Normally, engineers have to approach such munitions (shells, cluster bombs aircraft bombs) or roadside bombs, place explosives next to it, then move away, trailing a detonator wire behind them, and then set off the explosive to destroy the bomb or unexploded munitions. Using the Zeus laser is a lot cheaper (a few cents per laser shot) and safer than the traditional method.
+
 
+
Zeus is particularly useful when you have an area with a lot of unexploded munitions just lying about. The munitions are often unstable, meaning that just picking them up could set them off. The Zeus system can be fired up to 2,000 times a day. Last year, a Zeus-HLONS was sent to Afghanistan for six months last year, where it destroyed 200 items, including 51 in one 100 minute period.
+
 
+
<b>The Engine</b>
+
The Muwatallis main battle tank uses breakthrough fuel cell technology, introducing a compact next-generation fuel cell stack that dilivers higher performance with increased range and fuel effieciency, and is designed to operate at temperatures as low as -50 degrees celcius. Cold weather operation is one of the most significant technical barriers to the mass-market application of fuel cell technology. Using the Ultra-Capacitor originally designed by Honda the fuel cell now has a supplementary power source to the main power source - the fuel cell stack - for more powerful preformace under varios driving conditions.
+
 
+
The fuel tank is larger than the conventional fuel cell tank on a normal car, which gives this massive behemoth a powerful velocity of 40kph, for a range of three hundred kilometers. It has a ten gear transmission to avoid over taxing the transmission which gives it a longer life time on the battlefield, avoiding freqent breakdowns.
+
 
+
Of course, the supply vehicles, need to be specialized to refuel the tank. For every twenty tanks a five hundred thousand dollar truck needs to be built which converts solar energy, as well as hydrogen and natural gas, into fuel through a purifier and inverter.
+
 
+
However, this technology makes the tank engine noise null, and provides for quieter tanks. The only thing an infantryman would hear would be the tank treads, and even those can be made quieter. A new age for a tank has come!
+
 
+
<b>The Main Gun and Turret</b>
+
The gun in use a 155mm ETC gun with the internal "R" rings which is just thousands of springs nanometers in length that cut down on recoil and muzzle flash making the gun much more effective.
+
 
+
To make the turret turn quicker the turret and the chassis are divided in two by a central gyro circular sheet of composite metals, using McPhearson strut like bars, interwoven in springs (much like the shocks on your cars) and then smaller gyrating bars, to make the movement hydraulic, consequently, making it much faster.
+
 
+
<b>Production Cost:</b> 14 Million
+
<b>Export Cost:</b> 18 Million
+

Latest revision as of 06:02, 9 July 2007

Pz. X Refit Industries:

   * The Macabees

The Armor: The armor is composed of a diamond helix bonded through double carbon bonds and other ADBOND designs around and through a buckyball matrix, layered in 240 nano-meter strips. This is covered by the Indium/Osmium-Germanium mix 2nd Gen Supercooled Coil, which was stolen off an Iscariot VIII a while back. They are filled with supercooled liquid Xenon and when a round impacts, the liquid gasses out to counter the heat while the metal coil itself is used as a heat conductor to dissipate the attack it will render that portion of the coil useless but should still enable it to work on other parts of the tank. Especially good against HEAT. Finally there is a thick layer of NxRA Ablative Armor Blocks, up to 14cm in some places. This provides up to an additional 1000mm RHA, for a total of up to 5500mm RHA. (max. real thickness 200mm). However, the central differences between the Spanish buckyball matrix and the composites of the armor is the type of bondage between the diamond helix, allowing for a stronger chemical bonding, meaning the armor RHA will be a tad stronger. The ADBOND (ADvanced BOND) is a third generation single crystal superalloy bond. This primary armor is further reinforced by a ceramic composite bulk between it and a DUEIS plate, which gives it a final 7,000mm of armor. This final layer is coupled by a layer of NxRA armor which gives it the final RHA value of 8,500mm, all for a real value of some 800mm.

In a final insulated layer under this above a MEXAS armor layer will be employed, measuring twenty inches thick, which gives it an RHA value of over 300mms, giving the tank a total RHA value of some 9,000mms.

MEXAS density is ~1.7g/cc and reactive elements are reported in the construction with a strenght of 2.5 GPa, not many materials are that strong but Boron Carbide could fit the bill. B4C has a mass of 2.55g/cc and ME vs shaped charges of ~ 4.0...leading to a space effectiveness of ~ 1.3.

Now a mixture of CaCO/GAP and B4C should have a density of 1.7-1.8 g/cc [2.55g/cc 1.0g/cc ÷2]. Some thing with the density of CaCO/Gap should have an effectiveness of ~ 0.7 [space effectiveness] so a average of B4C